If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-4y=41
We move all terms to the left:
y^2-4y-(41)=0
a = 1; b = -4; c = -41;
Δ = b2-4ac
Δ = -42-4·1·(-41)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{5}}{2*1}=\frac{4-6\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{5}}{2*1}=\frac{4+6\sqrt{5}}{2} $
| -2z+2+4z=(16/5)+2z-(6/5) | | 2p-25=13 | | 9(x-3)=7x+43 | | 0.4(15p+1.6)=1.5(4p+1.6) | | 5n=40=60 | | 12=c+17 | | -16f=-14f-14 | | 5=s+11/8 | | 24+44x=19+1.69x | | (3/2)x+2.3-(1/2)x=4.3+x | | a+90+21=180 | | 10(2+2)-y=2(8y-8) | | -5x-12x=-14 | | 4(x+2)=5(x+1)+9(x+3) | | X^2+12x+31=-4 | | 24/0.25=s | | 6x=40-16 | | 4x2-5x(x+6)=2x+3 | | 8x-5=2+9 | | .25/24=s | | a+5=-17 | | u-73/4=5 | | 175+100x=225+50x | | (m+2)²+(m‐3)²=9 | | 14-2(w-3)=-11 | | -5(x+-10)=-25 | | m=-1(9,4) | | 8-2n=46 | | 8x-5=9x-18 | | 12x-17=2x+3 | | 2=1/3t=1+1/4t | | y+59=180 |